cleos涉及account和contract的命令都会产生一个action,进而生成一个transaction,所有的action都需要指定permission权限
权限验证流程图如下
主要分为三个部分:
-
permission声明:1~3
-
permission授权证明:4~9
-
权限检测:10~14,其中本地节点的nodeos和miner节点的nodeos都会执行权限检测,10~11(本地节点)和12~14(外部矿工节点)的工作内容是一样
权限声明
所有action相关命令都是通过通过-p/--permission声明permission参数,permission参数有几种表达形式:account, account@permission, publickey, account等价于account@active
cleos create account -j eosio testaccount -p eosio@owner cleos set account permission testaccount active -p eosio@active cleos push action contractaccount method 'data' -p account@publish cleos push action contractaccount method1 'data' -p publickey
如果用户没有输入该参数,cleos会自动添加默认permission,各种action的默认permission是不一样的
-
create account命令的默认permission是creator@active
-
set account permission命令的默认permission是account@active
-
push action contractaccount命令的默认permission是contractaccount@active
chain::action create_newaccount(const name& creator, const name& newaccount, public_key_type owner, public_key_type active) { return action { //tx_permission就是-p参数的值,如果没有account@permission这个值,则默认为creater@active tx_permission.empty() ? vector<chain::permission_level>{{creator,config::active_name}} : get_account_permissions(tx_permission), eosio::chain::newaccount{ .creator = creator, .name = newaccount, .owner = eosio::chain::authority{1, {{owner, 1}}, {}}, .active = eosio::chain::authority{1, {{active, 1}}, {}} } }; } chain::action create_updateauth(const name& account, const name& permission, const name& parent, const authority& auth) { return action { tx_permission.empty() ? vector<chain::permission_level>{{account,config::active_name}} : get_account_permissions(tx_permission), updateauth{account, permission, parent, auth}}; }
如果-p account@permission只带了account,则默认为account@active
vector<chain::permission_level> get_account_permissions(const vector<string>& permissions) { auto fixedPermissions = permissions | boost::adaptors::transformed([](const string& p) { vector<string> pieces; split(pieces, p, boost::algorithm::is_any_of("@")); //如果没有@permission这个声明,则默认为@active if( pieces.size() == 1 ) pieces.push_back( "active" ); return chain::permission_level{ .actor = pieces[0], .permission = pieces[1] }; }); vector<chain::permission_level> accountPermissions; boost::range::copy(fixedPermissions, back_inserter(accountPermissions)); return accountPermissions; }
权限授权证明
用户在执行cleos相关命令时通过-p声明了permission,这个permission只是一个字符串,谁都可以伪造的,因而需要提交真实可验证的证据,这个证据就是permission的授权(authority)信息。一个permission的authority可以是public key,也可以是子permission(另一个账号的permission, anotheraccount@permission), 这样就形成了一颗树, 叶子节点是public key, 只有该叶子节点的public key才有该权限。
所以提交授权证明的过程由两部分构成收集权限permission的public key
搜集permission生成的授权树的叶子节点的public key,即找出哪些public key被授予该权限
比如上图的account@publish权限展开后得到如下叶子节点public key集合【key1, key10, key11, key20, key21, key60, key61】,只要用户拥有这些key集合中的一个public key对应的私钥就可以证明该用户可以以该account@publish权限提交action.
cleos端:
fc::variant push_transaction( signed_transaction& trx, int32_t extra_kcpu = 1000, packed_transaction::compression_type compression = packed_transaction::none ) { auto required_keys = determine_required_keys(trx); } fc::variant determine_required_keys(const signed_transaction& trx) { // TODO better error checking //wdump((trx)); //拿到本地所有的public keys,这些key中可能拥有account@publish权限 const auto& public_keys = call(wallet_url, wallet_public_keys); //trx包含action,action包含account@publish权限信息 auto get_arg = fc::mutable_variant_object ("transaction", (transaction)trx) ("available_keys", public_keys); //调用keosd的服务获取本地满足account@publish权限的public key const auto& required_keys = call(get_required_keys, get_arg); return required_keys["required_keys"]; }
nodeos端:
flat_set<public_key_type> authorization_manager::get_required_keys( const transaction& trx, const flat_set<public_key_type>& candidate_keys, fc::microseconds provided_delay)const { auto checker = make_auth_checker( [&](const permission_level& p){ return get_permission(p).auth; }, _control.get_global_properties().configuration.max_authority_depth, candidate_keys, {}, provided_delay, _noop_checktime ); for (const auto& act : trx.actions ) { for (const auto& declared_auth : act.authorization) { //判断candidate_keys是否有合适的key被授予了act.authorization EOS_ASSERT( checker.satisfied(declared_auth), unsatisfied_authorization, "transaction declares authority '${auth}', but does not have signatures for it.", ("auth", declared_auth) ); } } //返回满足条件的public key return checker.used_keys(); }
通过私钥签名提供授权证明
搜索上一步收集到的public key,检测是否含有本用户的key,如果存在,则用相应的private key 签名交易,这样就可以证明该交易的具备account@publish这一permission
fc::variant push_transaction( signed_transaction& trx, int32_t extra_kcpu = 1000, packed_transaction::compression_type compression = packed_transaction::none ) { //上一步获取到的被授权的public key auto required_keys = determine_required_keys(trx); if (!tx_skip_sign) { //通过签名交易提交permission证明 sign_transaction(trx, required_keys); } if (!tx_dont_broadcast) { //广播交易 return call(push_txn_func, packed_transaction(trx, compression)); } else { return fc::variant(trx); } } void sign_transaction(signed_transaction& trx, fc::variant& required_keys) { // TODO determine chain id fc::variants sign_args = {fc::variant(trx), required_keys, fc::variant(chain_id_type{})}; //cleos调用keosd的sign_trx api来执行签名操作 const auto& signed_trx = call(wallet_url, wallet_sign_trx, sign_args); trx = signed_trx.as<signed_transaction>(); } chain::signed_transaction wallet_manager::sign_transaction(const chain::signed_transaction& txn, const flat_set<public_key_type>& keys, const chain::chain_id_type& id) { check_timeout(); chain::signed_transaction stxn(txn); for (const auto& pk : keys) { bool found = false; for (const auto& i : wallets) { if (!i.second->is_locked()) { //根据public key拿到private key并签名,这个是没法伪造的 const auto& k = i.second->try_get_private_key(pk); if (k) { stxn.sign(*k, id); found = true; break; // inner for } } } } return stxn; }
节点验证权限授权证明
用权限permission授权的私钥签名(授权证明)的交易发布到网络后,矿工收到该交易后,还需要解释签名并验证权限。验证分为两部分
-
声明的权限是否满足action的最低权限要求
transaction_trace_ptr push_transaction( const transaction_metadata_ptr& trx, fc::time_point deadline, bool implicit, uint32_t billed_cpu_time_us ) { FC_ASSERT(deadline != fc::time_point(), "deadline cannot be uninitialized"); transaction_trace_ptr trace; try { if (!implicit) { //检验权限和 authorization.check_authorization( trx->trx.actions, trx->recover_keys(), {}, trx_context.delay, [](){} } } FC_CAPTURE_AND_RETHROW((trace)) } /// push_transaction //从签名里获取action发起者拥有的public key const flat_set<public_key_type>& recover_keys() { // TODO: Update caching logic below when we use a proper chain id setup for the particular blockchain rather than just chain_id_type() if( !signing_keys ) signing_keys = trx.get_signature_keys( chain_id_type() ); return *signing_keys; }
void authorization_manager::check_authorization( const vector<action>& actions, const flat_set<public_key_type>& provided_keys, const flat_set<permission_level>& provided_permissions, )const { map<permission_level, fc::microseconds> permissions_to_satisfy; for( const auto& act : actions ) { bool special_case = false; fc::microseconds delay = effective_provided_delay; if( act.account == config::system_account_name ) { special_case = true; //系统级action,比如修改权限的授权,链接授权等action,它的执行权限permission是固定的,需要在这里检测签名的keys是否具备相应的permission if( act.name == updateauth::get_name() ) { check_updateauth_authorization( act.data_as<updateauth>(), act.authorization ); } else if( act.name == deleteauth::get_name() ) { check_deleteauth_authorization( act.data_as<deleteauth>(), act.authorization ); …….. } } //authorization //其他action,检测授权是否正确 for( const auto& declared_auth : act.authorization ) { //对于上面的case,这里的declared_auth=account@publish checktime(); if( !special_case ) { //获取该action需要的最低权限 auto min_permission_name = lookup_minimum_permission(declared_auth.actor, act.account, act.name); if( min_permission_name ) { // since special cases were already handled, it should only be false if the permission is eosio.any //从区块中取出最低权限数据 const auto& min_permission = get_permission({declared_auth.actor, *min_permission_name}); //比较声明的权限是否满足最低权限 EOS_ASSERT( get_permission(declared_auth).satisfies( min_permission, _db.get_index<permission_index>().indices() ), irrelevant_auth_exception, "action declares irrelevant authority '${auth}'; minimum authority is ${min}", ("auth", declared_auth)("min", permission_level{min_permission.owner, min_permission.name}) ); } } }
声明的权限的授权签名是否正确
void authorization_manager::check_authorization( const vector<action>& actions, const flat_set<public_key_type>& provided_keys, const flat_set<permission_level>& provided_permissions, )const { auto checker = make_auth_checker( [&](const permission_level& p){ return get_permission(p).auth; }, _control.get_global_properties().configuration.max_authority_depth, provided_keys, provided_permissions, effective_provided_delay, checktime ); ….. for( const auto& p : permissions_to_satisfy ) { checktime(); // TODO: this should eventually move into authority_checker instead //验证 EOS_ASSERT( checker.satisfied( p.first, p.second ), unsatisfied_authorization, "transaction declares authority '${auth}', " "but does not have signatures for it under a provided delay of ${provided_delay} ms", ("auth", p.first)("provided_delay", provided_delay.count()/1000) ("delay_max_limit_ms", delay_max_limit.count()/1000) ); }
权限验证实例
修改权限,命令如下:
$cleos set account permission testaccount active '{"threshold" : 1, "keys" : [], "accounts" : [{"permission":{"actor":"bob","permission":"active"},"weight":1}, {"permission":{"actor":"stacy","permission":"active"},"weight":1}]}’ owner
该命令没有添加permission参数,cleos会自动添加默认权限声明,其等价于
$cleos set account permission testaccount active '{"threshold" : 1, "keys" : [], "accounts" : [{"permission":{"actor":"bob","permission":"active"},"weight":1}, {"permission":{"actor":"stacy","permission":"active"},"weight":1}]}’ owner -p testaccount@active
-p testaccount@active
是cleos自动补全的
该action打包到transaction然后进入到了某一个矿工节点,然后就会执行上面的authorization_manager::check_authorization
函数来验证权限,而对于该系统action,会调用check_updateauth_authorization
来检验void authorization_manager::check_updateauth_authorization( const updateauth& update, const vector<permission_level>& auths )const { EOS_ASSERT( auths.size() == 1, irrelevant_auth_exception, "updateauth action should only have one declared authorization" ); const auto& auth = auths[0]; EOS_ASSERT( auth.actor == update.account, irrelevant_auth_exception, "the owner of the affected permission needs to be the actor of the declared authorization" ); //检测对应的permission是否存在 const auto* min_permission = find_permission({update.account, update.permission}); if( !min_permission ) { // creating a new permission //不存在则以父permission为min_permission检测 min_permission = &get_permission({update.account, update.parent}); } //示例中,testaccount.active存在,所以min_permission=testaccount@active //声明的也是testaccount@ative,所以能通过验证 EOS_ASSERT( get_permission(auth).satisfies( *min_permission, _db.get_index<permission_index>().indices() ), irrelevant_auth_exception, "updateauth action declares irrelevant authority '${auth}'; minimum authority is ${min}", ("auth", auth)("min", permission_level{update.account, min_permission->name}) ); }
contract函数执行类型的action, 权限检测由contract代码激发,比如下面的例子
void hi( account_name user ) { require_auth( user ); print( "Hello, ", name{user} ); }
require_auth(user)
就会激发对‘user@active’权限的检测转载自:http://blog.csdn.net/itleaks
版权属于:区块链中文技术社区 / 转载原创者
本文链接:https://bcskill.com/index.php/archives/160.html
相关技术文章仅限于相关区块链底层技术研究,禁止用于非法用途,后果自负!本站严格遵守一切相关法律政策!